Arithmetic Properties for Apéry-like Numbers
نویسندگان
چکیده
It is known that the numbers which occur in Apéry’s proof of the irrationality of ζ(2) have many interesting congruences properties while the associated generating function satisfies a second order differential equation. We prove congruences for numbers which arise in Beukers’ and Zagier’s study of integral solutions of Apéry-like differential equations.
منابع مشابه
Arithmetic Properties of Apéry Numbers and Central Delannoy Numbers
Let p > 3 be a prime. We derive the following new congru-ences: p−1 n=0 (2n + 1)A n ≡ p (mod p 4) and p−1 n=0
متن کاملSupercongruences for Apéry-like Numbers
It is known that the numbers which occur in Apéry’s proof of the irrationality of ζ(2) have many interesting congruence properties while the associated generating function satisfies a second order differential equation. We prove supercongruences for a generalization of numbers which arise in Beukers’ and Zagier’s study of integral solutions of Apéry-like differential equations.
متن کاملOn Apéry Numbers and Generalized Central Trinomial Coefficients
, and E0, E1, E2, . . . are Euler numbers. We show that the arithmetic means 1 n ∑n−1 k=0 (2k+1)Ak (n = 1, 2, 3, . . . ) are always integers and conjecture that ∑n−1 k=0 (2k+1)(−1) Ak ≡ 0 (mod n) for every n = 1, 2, 3, . . . . We also investigated generalized central trinomial coefficient Tn(b, c) (with b, c ∈ Z) which is the coefficient of xn in the expansion of (x2 + bx+ c)n. For any positive...
متن کاملApéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators
We derive an expression for the value ζQ(3) of the spectral zeta function ζQ(s) studied in [10, 11] for the non-commutative harmonic oscillator defined in [17] using a Gaussian hypergeometric function. In this study, two sequences of rational numbers, denoted J̃2(n) and J̃3(n), which can be regarded as analogues of the Apéry numbers, naturally arise and play a key role in obtaining the expression...
متن کاملHigher Apéry-like numbers arising from special values of the spectral zeta function for the non-commutative harmonic oscillator
A generalization of the Apéry-like numbers, which is used to describe the special values ζQ(2) and ζQ(3) of the spectral zeta function for the non-commutative harmonic oscillator, are introduced and studied. In fact, we give a recurrence relation for them, which shows a ladder structure among them. Further, we consider the ‘rational part’ of the higher Apéry-like numbers. We discuss several kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009