Arithmetic Properties for Apéry-like Numbers

نویسندگان

  • DERMOT MCCARTHY
  • ROBERT OSBURN
  • BRUNDABAN SAHU
چکیده

It is known that the numbers which occur in Apéry’s proof of the irrationality of ζ(2) have many interesting congruences properties while the associated generating function satisfies a second order differential equation. We prove congruences for numbers which arise in Beukers’ and Zagier’s study of integral solutions of Apéry-like differential equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Properties of Apéry Numbers and Central Delannoy Numbers

Let p > 3 be a prime. We derive the following new congru-ences: p−1 n=0 (2n + 1)A n ≡ p (mod p 4) and p−1 n=0

متن کامل

Supercongruences for Apéry-like Numbers

It is known that the numbers which occur in Apéry’s proof of the irrationality of ζ(2) have many interesting congruence properties while the associated generating function satisfies a second order differential equation. We prove supercongruences for a generalization of numbers which arise in Beukers’ and Zagier’s study of integral solutions of Apéry-like differential equations.

متن کامل

On Apéry Numbers and Generalized Central Trinomial Coefficients

, and E0, E1, E2, . . . are Euler numbers. We show that the arithmetic means 1 n ∑n−1 k=0 (2k+1)Ak (n = 1, 2, 3, . . . ) are always integers and conjecture that ∑n−1 k=0 (2k+1)(−1) Ak ≡ 0 (mod n) for every n = 1, 2, 3, . . . . We also investigated generalized central trinomial coefficient Tn(b, c) (with b, c ∈ Z) which is the coefficient of xn in the expansion of (x2 + bx+ c)n. For any positive...

متن کامل

Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators

We derive an expression for the value ζQ(3) of the spectral zeta function ζQ(s) studied in [10, 11] for the non-commutative harmonic oscillator defined in [17] using a Gaussian hypergeometric function. In this study, two sequences of rational numbers, denoted J̃2(n) and J̃3(n), which can be regarded as analogues of the Apéry numbers, naturally arise and play a key role in obtaining the expression...

متن کامل

Higher Apéry-like numbers arising from special values of the spectral zeta function for the non-commutative harmonic oscillator

A generalization of the Apéry-like numbers, which is used to describe the special values ζQ(2) and ζQ(3) of the spectral zeta function for the non-commutative harmonic oscillator, are introduced and studied. In fact, we give a recurrence relation for them, which shows a ladder structure among them. Further, we consider the ‘rational part’ of the higher Apéry-like numbers. We discuss several kin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009